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Granular surface flows are important in industrial practice and natural systems, but
the understanding of such flows is at present incomplete. We present a combined the-
oretical and experimental study of quasi-two-dimensional heap formation by pouring
particles continuously at a point. Two cases are considered: open systems and closed
systems. Experimental results show that the shear rate in the flowing layer is nearly
independent of the mass flow rate, and the angle of static friction at the bed–layer
interface increases with flow rate. Predictions of the model for the flowing layer
thickness and interface angles are in good agreement with experiments.

1. Introduction
Surface flows of granular materials – thin layer flows on top of nearly quiescent

granular beds – are important in industrial practice and nature. Industrial examples
appear in the transportation, processing and storage of materials, in systems such
as rotary kilns, tumbling mixers, and in feeding and discharge of silos. Examples
in nature include formation of sand dunes, lava flow, avalanches, and transport of
sediments in rivers. The simplest case corresponds to dry non-cohesive materials with
air being the interstitial fluid and particles 100 µm and larger.

Experiments are relatively simple; the most straightforward way to produce a
surface flow is by pouring grains on a heap. However, the understanding of surface
flows is incomplete at present. Most of the emphasis has been on the theoretical
side and several approaches, based on different physical assumptions have been
proposed. Fluid mechanical approaches were pioneered by Bagnold (1954). Following
this approach, Savage & Hutter (1989) developed a general model based on depth-
averaged mass and momentum balance equations, assuming the flow to be purely
frictional. At the other extreme we have sandpile cellular automata models and
experiments, considering infinitesimally slow heap formation (Bak, Tang & Wiesenfield
1987; Frette et al. 1996).

There has been renewed activity in continuum descriptions in the past few years.
Bouchaud et al. (1994) proposed a phenomenological continuum model for surface
dynamics – now generally referred to as the BCRE model – based on the conservation
of grains in the flowing layer and taking into account grains being absorbed into
the stationary heap or eroded from the heap into the flowing layer. The momentum
balance for grains is not explicitly considered. Instead, a form of the source term for
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the rate of absorption or erosion of particles from the heap is assumed. For surfaces
with small curvature, the source term is

Γ = γR(βr − β), (1.1)

where R is the number density of flowing grains, β is the surface angle, βr is the ‘angle
of repose’ and γ > 0 is a phenomenological constant. Particles are absorbed into the
heap if β < βr and the heap is eroded if β > βr . Boutreux, Raphaël & de Gennes
(1998) suggest that (1.1) is valid only for thin flowing layers. For thick layers relative
to the particle diameter, they argue that the source term should be

Γ = V (βn − β), (1.2)

where V ∼ (gd)1/2 is a characteristic velocity, d is the particle diameter, and g is the
acceleration due to gravity. Thus βr is replaced by βn, the neutral angle, the angle
at which grains are neither absorbed nor eroded from the heap. Recently, Douady,
Andreotti & Daerr (1999) developed a continuum model for heap formation following
the approach of Savage & Hutter (1989), but allowing for exchange of grains between
the heap and the layer. They found that the source term has the form (1.1) for thin
layers and the form (1.2) for thick layers. Further, they obtained the velocity of grains
in the layer to be proportional to the layer thickness, in contrast to the BCRE and
Boutreaux et al. (BRdG) models where it is constant.

Although these models describe the qualitative behaviour of the system, quantitative
predictions require the estimation of several phenomenological parameters, and this
has not yet been done. The only related previous experimental works appear to be by
Grasselli & Herrmann (1999), Grasselli et al. (2000) and Lemieux & Durian (2000).
The dynamics of heap formation has not been studied by experiments in detail.

We note the parallel development of continuum models for free surface flows in
partially filled rotating cylinders (Rajchenbach 1990; Rao, Bhatia & Khakhar 1991;
Zik et al. 1994; Khakhar et al. 1997; Elperin & Vikhansky 1998; Makse 1999). In this
case, the exchange of material between the fixed bed (which to a first approximation
rotates as a solid body) and the layer of particles flowing on the surface is determined
solely by kinematics and a model for the source term is not required. Other than this,
however, the models for the two systems are nearly identical.

We present here an experimental study of quasi-two-dimensional heap formation
by pouring particles continuously at a point. The systems considered are shown
in figure 1, and denoted as open systems and closed systems using the terminology
of Boutreux & de Gennes (1996). A continuum model for surface granular flow is
developed along the lines of the boundary layer approach used previously for rotating
cylinders (Khakhar et al. 1997). The plan of the paper is as follows. The model is
developed in the following section and results for different limiting cases are discussed.
Experimental details are given in § 3 and experimental results and comparisons to
theory are given in § 4, with conclusions in § 5.

2. Theory
We consider a flowing layer on the surface of a heap (figure 1) assuming the flow is

nearly uni-directional in the layer and curvature effects are small. The depth-averaged
equations for flow in the layer are then the continuity equation

∂

∂t
(δ〈ρ〉) +

∂

∂x
(δ〈ρvx〉) = (ρvy)|y=0, (2.1)
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Figure 1. Typical streakline photographs showing the free surface profile and the heap–layer
interface marked by a dashed line for (a) the open system and (b) the closed system. (c) A schematic
view of the experimental apparatus. The endwall (E) is removed for the open heap experiments.

and the x-momentum balance equation

∂

∂t
(δ〈ρvx〉) +

∂

∂x
(δ〈ρv2

x〉) = − ∂

∂x
(δ〈τxx〉) + τxy|y=0 + (ρvxvy)|y=0 + 〈ρ〉gδ sin β. (2.2)

In the above equations, vx and vy are the velocity components, τxy, τxx the shear stress
and normal stress, ρ the bulk density of solids, β(x, t) is the angle made by the

interface with the horizontal, and 〈·〉 = (1/δ)
∫ δ

0
· dy denotes average across the layer.

We make a number of assumptions to simplify (2.1)–(2.2). The bulk density in the
layer (ρ) is taken to be nearly constant since the dilation of the flowing particles is
small in the slow flows of interest here. The velocity profile in the layer is assumed to
be linear and of the form

vx = 2u(x, t)y/δ, (2.3)

where u = 〈vx〉 is the depth-averaged velocity in the layer. Experimental studies of
surface flows in rotating cylinders using particle tracking velocimetry show a more
complex behaviour (Jain, Ottino & Lueptow 2001); however, here we take a linear
profile for simplicity. The variation of the normal stress (τxx) in the flow direction (x)
is neglected since changes in the layer thickness are small. The shear stress is taken to
be a linear sum of the Bagnold collisional stress and the Coulombic frictional stress

τxy|y=0 = −cρdδ
(
∂vx

∂y

)2

− ρgδ cos β tan βs (2.4)

where c ≈ 1.5 is a parameter of the model and tan βs is the effective coefficient of
dynamic friction, with βs taken to be the static angle of repose. The stress equation
(2.4) is empirical and was obtained from an experimental study of surface flow in a
rotating cylinder (Orpe & Khakhar 2001). With the above assumptions, the governing
equations reduce to

∂δ

∂t
+

∂

∂x
(δu) = −Γ , (2.5)

∂

∂t
(δu) +

4

3

∂

∂x
(δu2) = −4cd

u2

δ
+ gδ

sin(β − βs)
cos βs

, (2.6)

where Γ = −vy|y=0. To determine the location of the heap–layer interface an additional
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condition is required. Assuming that the shear stress imposed by the flowing particles
on the first layer of stationary particles in the heap (neglecting slow creeping motion,
Komatsu et al. 2001) is balanced by friction, the Mohr–Coulomb criterion yields

τxy|y=0 = −ρg(δ + d) cos β tan βm, (2.7)

where tan βm is the effective coefficient of static friction. We refer to βm as the
‘maximum angle of repose’ because it is the highest permissible angle under steady
flow conditions. Using (2.4) and the assumptions given above, (2.7) reduces to

4cd(u2/δ) + gδ cos β tan βs = g(δ + d) cos β tan βm, (2.8)

which gives a direct relation between the velocity in the layer (u) and the layer
thickness (δ). For the case of thick layers (δ � d) (2.8) simplifies to

u = γ̇δ/2, (2.9)

with the shear rate (γ̇ = ∂vx/∂y) given by

γ̇ =

[
g cos β sin(βm − βs)
cd cos βm cos βs

]1/2

. (2.10)

Finally, the dynamics of the interface motion is given by

∂h

∂t
= Γ cos β,

∂h

∂x
= − sin β,

∂w

∂x
= cos β, (2.11)

where (h(x, t), w(x, t)) gives the parametric equation for the interface (figure 1a). This
completes the formulation of the model and all variables can be calculated using
(2.5), (2.6), (2.9)–(2.11) and appropriate initial and boundary conditions.

The derivation given above is similar to that of Douady et al. (1999). An important
difference between the two is that Douady et al. (1999) do not include a constitutive
equation for stress in the flowing layer (equivalent to (2.4)). Instead, the velocity
gradient in the flowing layer is assumed to be constant and given by γ̇ = (g sin β/d)1/2.

2.1. Quasi-steady state solution

Consider a quasi-steady flow (∂δ/∂t, ∂u/∂t ≈ 0) in a thick flowing layer (δ � d) and a
slowly varying interface angle (∂β/∂x ≈ 0). Using (2.9) and the above approximations,
the continuity equation (2.5) becomes

γ̇δ
∂δ

∂x
= −Γ , (2.12)

and the momentum balance equation (2.6) together with (2.8) simplifies to

γ̇2δ
∂δ

∂x
= −g sin(βm − β)

cos βm
. (2.13)

Combining (2.12) and (2.13) yields

Γ =
g sin(βm − β)

γ̇ cos βm
, (2.14)

which, for the case when βm ≈ β, reduces to

Γ ≈ V (βm − β), (2.15)

where V = g/γ̇ cos βm. From (2.10) we get γ̇ ∝ (g/d)1/2 so that V ∝ (gd)1/2 as assumed
in the BRdG model. Thus (2.15) is similar to the source term of the BRdG model, if
we take the neutral angle to be the maximum angle of repose.
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2.2. Heap flow in an open system

Consider the heap flow in an open system between vertical parallel plates separated
by a gap T due to a continuous inflow of grains at one edge (figure 1a). At steady
state, particles are neither absorbed nor eroded. Thus Γ = 0, which on substituting
into (2.14) yields β = βm ≡ constant. The interface profile is obtained from (2.11) as
h(w) = h(0)−w tan βm. Further, (2.12) and (2.13) indicate that in this case u and δ are
constant along the layer. The mass flow rate is ṁ = ρuδT , and using (2.9) we find
that the layer thickness varies with the mass flow rate according to

δ = [2ṁ/(Tργ̇)]1/2. (2.16)

2.3. Formation of a heap in a closed system

At steady state we must have dh/dt ≡ constant for the heap to rise uniformly. Thus,
the time variation of the interface is given by h(x, t) = h(0, 0) − tan βw + Γt cos β.
Integrating (2.12), the layer thickness profile is obtained as

δ = [δ2
L + 2Γ (L− x)/γ̇]1/2 (2.17)

where δL is the layer thickness at the end of the layer given by x = L, and L is the
length of the interface (figure 1b). A linear variation of layer thickness with distance
was obtained by Boutreux & de Gennes (1996) assuming a constant velocity along
the layer (u). The rise velocity is related to the mass flow rate by

Γ = ṁ/(TLρ). (2.18)

and the interface angle calculated from (2.15) is

β = βm − Γ/V . (2.19)

3. Experiments
3.1. Materials and apparatus

Experiments are carried out in a quasi-two-dimensional bin with vertical, transparent
PMMA walls separated by a gap T = 10 mm. The bin is sufficiently tall and the
upper part acts as the hopper as shown in figure 1(c). An auxiliary hopper is fitted
on top of the bin to ensure that the supply hopper is full during an experimental
run. The mass flow rate into the system is controlled by adjusting the gap width b
at the exit of the hopper. The vertical height of the exit can also be adjusted. The
same apparatus is used for the open and closed systems. In the open systems the
endwall (E; see figure 1c) is removed. Steel balls of diameter 2± 0.2 mm are used in
the experiments. A few results are also reported for 1 mm steel balls.

3.2. Open system experiments

The objective of the experiments in the open system is to measure the interface
angle and the layer thickness for different mass flow rates. The interface angle is of
particular significance in this case since it is equal to the maximum angle of repose
(β = βm). The mass flow rate is directly measured by collecting the particles leaving
the system for a fixed interval of time. Time lapse photography, in which the camera
shutter is kept open for a sufficient interval (1/30 s) to obtain flow streaklines, is used
to determine the layer thickness and the interface angle.

The height of the exit is adjusted so that the exit point is about 2–3 cm from
the top of the heap to prevent bouncing of the particles when they fall on the
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heap. The free surface of the flowing layer and the interface between the heap and
the layer identified as the boundary between the moving particles (fuzzy) and the
stationary particles (sharp) are traced manually on digitized streakline photographs
using image analysis (Image Pro). Figure 1(a) shows a typical streakline photograph
with the interface marked. The method allows measurement of the interface position
to an accuracy of one particle diameter. Straight lines are fitted to the traced data
points (after eliminating entrance and exit regions), and the interface and free surface
angles are obtained from the slope of the line. The static angle of repose (βs) is the
surface angle when the particles have run out and the flow stops. In all the cases
studied, the lines corresponding to the interface and free surface were nearly parallel
indicating that the layer thickness is constant. The layer thickness is thus obtained as
the difference between the intercept values for the two fitted lines. The variation of
the mass flow rate with exit gap width (b; see figure 1c) is linear and was determined
to be ṁ = 22.7(b− 4.3) g s−1, with b in mm.

3.3. Closed system experiments

The measurements for the closed system include the heap rise velocity (dh/dt),
the layer thickness profile (δ(x)) and the interface angle profile (β(x)) for different
mass flow rates (ṁ). The heap rise velocity is measured from video recordings of
the heap formation process, and the layer thickness profile and the interface angle
profile are obtained by streakline photography. The mass flow rate is obtained from
measurements of the exit gap width (b) using the fitted equation from the open system
experiments.

The procedures used in the closed system experiments are similar to those for the
open system. The distance that the particles free-fall at the entry point reduces as
the heap rises. To minimize the bouncing of particles, the streakline photographs are
taken only when the top of the heap has risen to about 3 cm below the exit. The
height of the heap, measured near the middle (x ≈ L/2), showed a linear increase
with time over the entire duration of heap rise, in all the cases studied. Straight line
fits to the data are used to obtain the heap rise velocity (dh/dt), which is independent
of position along the interface (x). The coordinates of the free surface and interface
are extracted from streakline photographs (see for example, figure 1b) using image
analysis and fourth-degree polynomials are fitted to the data. The layer thickness
profile (δ(x)) and the interface angle profile (β(x)) are computed from the fitted
polynomials.

4. Results and discussion
4.1. Open system experiments

The key result of the open system experiments is shown in figure 2(a). The data
indicate that βm, and thus the coefficient of static friction at the heap–layer interface
(tan βm), is not a constant but increases with the local flow rate. The increase is greater
for the smaller particles. The angles obtained for heap flow match those for a rotating
cylinder when the flow rate is held constant (Orpe & Khakhar 2001). An increase in
surface angle with flow rate was also reported by Lemieux & Durian (2000). Zhang
& Campbell (1992) found the Mohr–Coulomb criterion with a constant coefficient
of friction to be valid in their two-dimensional simulations of sheared spheres in
a gravity field. Daerr & Douady (1999) reported an exponential decrease in the
coefficient of static friction with height for particles at rest. Since the maximum angle
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Figure 2. Variation of (a) the maximum angle of repose (βm) and (b) layer thickness (δ) with
mass flow rate (ṁ) for flow in an open system. Error bars indicate the standard deviation for ten
measurements. Filled symbols: data for 1 mm steel balls, open symbols: data for 2 mm steel balls.
Solid line in (a) is a fitted second-order polynomial spanning the range of mass flow rates used in
the closed system experiments. Solid line in (b) is a fit of (2.16).

of repose varies by as much as 20◦ over the flow rates studied, neglecting the variation
in the maximum angle with flow rate could result in significant errors in predictions.

Figure 2(b) shows the variation of the layer thickness (δ) with mass flow rate. It
ranges from 10 mm to 20 mm for the flow rates studied and is nearly independent
of particle size. The solid line is a fitted curve of the form δ ∝ ṁ1/2. This suggests
agreement with theoretical predictions (2.16) if the product ργ̇ is independent of mass
flow rate. As shown below, closed system experiments for 2 mm particles indicate that
the bulk density is independent of mass flow rate and given by ρ = 3.2 g cm−3. Using
this value (which is justified since the local flow in the layer in the open and closed
systems is very similar) we find from (2.16) that the shear rate is nearly constant,
with γ̇ = 22± 3 s−1 for the 2 mm particles. The predicted shear rate using (2.10) and
experimental values of βm and βs give γ̇ = 20±5 s−1, which is in good agreement with
the experimental value. The scaling used by Douady et al. (1999) gives γ̇ = 53 s−1.

4.2. Closed system experiments

The closed system experiments show a linear dependence between heap rise velocity
(Γ ) and mass flow rate (ṁ), which is in concurrence with (2.18) if ρ is constant. A
best fit line yields ρ = 3.2 g cm−3. Figure 3 shows the variation of the layer thickness
with distance from the end of the layer (L− x). The thickness at the end of the layer
is nearly zero (δL ≈ 0) for the low flow rates; however, with increasing mass flow
rates it increases monotonically with flow rate. In the case of wider bins or lower
mass flow rates, the flowing layer would end away from the far edge of the bin and
result in an intermittent flow. The solid lines in figure 3 are fits of (2.17) to obtain
δL and γ̇. There is a good match between the fitted lines and the experimental data,
which implies that the shear rate, γ̇, is nearly constant. Using experimental results for
the rise velocity (Γ ) and the interface length (L), we obtain γ̇ = 20± 2 s−1, where the
standard deviation indicated is calculated for all 10 flow rates studied. Thus the shear
rates for the open and closed systems are the same within experimental error.

The angle of the interface also varies with distance along the interface. Results
obtained from analysis of the streakline photographs are shown in figure 4. Although
the angle is roughly constant in the middle region, there is a significant decrease with
distance from the pouring point. This picture is different from the result predicted
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corresponding to the data in figure 3. Solid lines are predictions of (2.19).

by Boutreux & de Gennes (1996) in which the interface angle was found to be a
constant.

Comparison of the interface angle profile to theoretical predictions requires an
estimate of the maximum interface angle (βm) for the closed system. Here we assume
that the maximum angle is determined by the local flow rate and use the data obtained
for the open system to determine a correlation between βm and ṁ. A second-degree
polynomial is fitted for a range of mass flow rates corresponding to those used in the
closed system experiments (solid line in figure 2a). Since the density in the layer (ρ) is
constant and the heap rise is uniform (Γ = constant), the mass flux transferred from
the layer into the heap is uniform along the interface. Thus the mass flow rate varies
linearly with distance and is given by ṁx = ṁ(1−x/L). The maximum angle of repose
at any position is then calculated as βm = βm(ṁx) using the fitted polynomial, and β
from (2.19). Predictions shown in figure 4 indicate good agreement between theory
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and experiment at the higher flow rates; at low flow rates there are some differences
between the two. The predictions span only the mass flow rate range of the fitted
curve shown in figure 2(a).

5. Conclusions
Experimental results for open and closed systems give new insight into granular

surface flows. Measurements of the surface angle in the open system directly yield the
angle of static friction (βm) which increases with the mass flow rate. The layer thickness
is found to increase with mass flow rate as δ ∝ ṁ1/2. Closed system experiments show
that the heap rise velocity is directly proportional to the mass flow rate of particles,
implying that the bulk density is nearly constant in the flowing layer. Further, the
layer thickness varies as δ2 ∝ x and the interface angle decreases with distance from
the pouring point.

Model predictions are, by and large, in good agreement with experimental results
using fitted values for the two parameters: the bulk density and shear rate. Both are
found to be independent of the mass flow rate for the ranges of ṁ studied. The shear
rate is also found to be nearly same for the open and closed systems. The shear rate
predicted from theory is nearly constant as well, and equal to the fitted values. The
results presented here are robust, and represent a subset of a much wider range of
experimental studies carried out. Similar results are obtained for different materials
(1 mm steel balls, and glass beads of different sizes) and for systems with different
geometry.

Quasi-two-dimensional experiments are becoming a common element in the tool-
kit of granular flow investigations. A question common to quasi-two-dimensional
studies is the extent to which walls affect the results. Undoubtedly density is affected.
However, to the extent that the walls are not accounted for explicitly in the models
a few comments are in order. To a first approximation the effect of walls may be
quantified by the ratio of particle diameter, d, to the thickness of the container, T . The
experiments reported here were conducted with d/T in the range 5 to 10, and results
are qualitatively similar for different ratios. For example, the layer thickness–mass
flow rate curve is nearly independent of d/T . Another set of investigations relevant
to the discussion are those in rotating cylinders. The evidence emerging from these
studies is that the flowing layers are relatively unaffected by d/T in the range 5 to 25
(Orpe & Khakhar 2001; Jain et al. 2001). A possible way to justify this is in terms
of the ratio of energy dissipation due to wall friction (γ̇δ tan βwN, where tan βw is
the coefficient of wall friction and N ∼ ρgδ cos β is the characteristic normal stress),
to the energy dissipation in the flow (γ̇ tan βmNT ), both for unit wall area. In the
dilated flowing layer the resistance will be due to rolling friction –βw ∼ 2◦ – for which
the ratio is 0.04. However, near the interface the resistance will be due to sliding
friction – βw ∼ 12◦ – for which the ratio is 0.3. In any case, this signals the beginning
of the questions that should be asked and not the end. Clearly more extensive research
should be carried out to elucidate the effects of the d/T and the absolute influence
of d.
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